Search results

Search for "thermal fluctuation" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • when four photons are absorbed (q[4] = 0.13). These probabilities are obtained from fitting experimental data, see Figure 5 below. The scale of the effective thermal fluctuation energy is given by black arrows for T = 265 mK (see the main text). Width of the switching current distribution of the
PDF
Album
Full Research Paper
Published 04 Jul 2022

Nickel nanoparticle-decorated reduced graphene oxide/WO3 nanocomposite – a promising candidate for gas sensing

  • Ilka Simon,
  • Alexandr Savitsky,
  • Rolf Mülhaupt,
  • Vladimir Pankov and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2021, 12, 343–353, doi:10.3762/bjnano.12.28

Graphical Abstract
  • with a noncollinear spin configuration, which causes the formation of a surface spin canting due to thermal fluctuation of magnetic moments. Figure 7 shows the temperature dependence of the magnetization obtained in the course of the last measurement cycle at which, for nickel particles, ferromagnetic
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2021

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • similar to that of supramolecular complexes. Therefore, they are excellent building blocks to achieve the formation of hierarchical supracolloidal structures. However, there are substantial challenges as the interactions between the nanoclusters are close to the thermal fluctuation energy of the
PDF
Album
Review
Published 30 Mar 2020

Fracture behaviors of pre-cracked monolayer molybdenum disulfide: A molecular dynamics study

  • Qi-lin Xiong,
  • Zhen-huan Li and
  • Xiao-geng Tian

Beilstein J. Nanotechnol. 2016, 7, 1411–1420, doi:10.3762/bjnano.7.132

Graphical Abstract
  • the present study. Before the displacement load is applied, the MD systems are equilibrated to 1 K to reduce the thermal fluctuation effect [20][21][22] and traction free by relaxing the system for 50 000 steps with the use of Nose–Hoover style thermostat and barostat (NPT) [23]. And then the system
PDF
Album
Supp Info
Full Research Paper
Published 07 Oct 2016

Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

  • Kang Xia,
  • Haifei Zhan,
  • Ye Wei and
  • Yuantong Gu

Beilstein J. Nanotechnol. 2014, 5, 329–336, doi:10.3762/bjnano.5.37

Graphical Abstract
  • . The extremely low temperature was chosen to exclude the thermal fluctuation influence. Figure 1 illustrates the atomic configuration of the GNHS-2.0N2.0B model and the simulation setup. A constant velocity of 0.005 Å/ps was applied to one end of the GNHS to exert the axial load (along the longitudinal
PDF
Album
Full Research Paper
Published 20 Mar 2014

Unlocking higher harmonics in atomic force microscopy with gentle interactions

  • Sergio Santos,
  • Victor Barcons,
  • Josep Font and
  • Albert Verdaguer

Beilstein J. Nanotechnol. 2014, 5, 268–277, doi:10.3762/bjnano.5.29

Graphical Abstract
  • analysis of thermal fluctuation that exploits the equipartition theorem has also indicated that thermal noise should be of the order of 0.1–1.0 pm close to the higher harmonics modes. The implication is that the working amplitudes should lie in the range of 1 to 100 pm. The noise analysis has also shown
PDF
Album
Full Research Paper
Published 11 Mar 2014

A highly pH-sensitive nanowire field-effect transistor based on silicon on insulator

  • Denis E. Presnov,
  • Sergey V. Amitonov,
  • Pavel A. Krutitskii,
  • Valentina V. Kolybasova,
  • Igor A. Devyatov,
  • Vladimir A. Krupenin and
  • Igor I. Soloviev

Beilstein J. Nanotechnol. 2013, 4, 330–335, doi:10.3762/bjnano.4.38

Graphical Abstract
  • -independent component of the spectral density SI. The spectral density of NW current fluctuations at an angular frequency ω = 2πf, so that << kBT, is determined by the thermal fluctuation SIn = 4kBTG. The spectral density of current fluctuations at Schottky barriers formed at contact regions is described by
  • [23] as SIB = (2eV/RB) coth (eV/2kBTB), where TB is the temperature of the barrier, RB is the barrier resistance, and V the voltage drop across it. At eV << kBTB this equation turns into the thermal fluctuation equation SIB = 4kBT/RB; at eV >> kBT, it turns into shot noise equation SIB = 2eI. Since
  • ≈ 1 kΩ (applied voltage Vd = 0.5 V). Rough estimates at the values of the parameters show that the spectral density of the current fluctuations at the Schottky barriers is described by the thermal-fluctuation equation and its contribution to SI in Equation 12 is negligibly small in comparison with the
PDF
Album
Full Research Paper
Published 28 May 2013

Spring constant of a tuning-fork sensor for dynamic force microscopy

  • Dennis van Vörden,
  • Manfred Lange,
  • Merlin Schmuck,
  • Nico Schmidt and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 809–816, doi:10.3762/bjnano.3.90

Graphical Abstract
  • taking account of the real geometry including the glue that is used to mount the tuning fork. Keywords: atomic force microscopy; finite element method; spring constant; thermal fluctuation; tuning fork; Introduction Quartz tuning forks provide excellent self-sensing probes in scanning probe microscopy
PDF
Album
Full Research Paper
Published 29 Nov 2012

Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films

  • Luyang Han,
  • Ulf Wiedwald,
  • Johannes Biskupek,
  • Kai Fauth,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 473–485, doi:10.3762/bjnano.2.51

Graphical Abstract
  • temperatures closely resemble each other and all are found to be near to the Stoner–Wohlfarth line. The small deviation at intermediate demagnetization fields can be understood as the effect of thermal fluctuation at T = 29 K [41]. Such a finding implies that there is no significant dipolar or exchange
PDF
Album
Video
Full Research Paper
Published 23 Aug 2011
Other Beilstein-Institut Open Science Activities